Simple Parallel Statistical Computing in R

Luke Tierney

Department of Statistics & Actuarial Science
University of Iowa

December 7, 2007
Many computations seem instantaneous.
Some would take hours, days, or months.
Often multiple processors are available:
 - multiple workstations
 - dedicated cluster
 - high-end SMP machine
Can we make effective use of these resources?
Ideal Performance Improvement

- p processors should be p times faster than one processor.
- Some time scales:

<table>
<thead>
<tr>
<th></th>
<th>Single processor</th>
<th>30 Processors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 minute</td>
<td>1 minute</td>
<td>2 seconds</td>
</tr>
<tr>
<td>1 hour</td>
<td>1 hour</td>
<td>2 minutes</td>
</tr>
<tr>
<td>1 day</td>
<td>1 day</td>
<td>1 hour</td>
</tr>
<tr>
<td>1 month</td>
<td>1 month</td>
<td>1 day</td>
</tr>
<tr>
<td>1 year</td>
<td>1 year</td>
<td>2 weeks</td>
</tr>
</tbody>
</table>
Ideal Programming Requirement

- Minimal effort for simple problems.
- Be able to use existing high level (i.e. R) code.
- Ability to test code in sequential setting.
Use multiple cooperating processes.

One process per available processor.

Processes need to communicate with each other.

Usually one process communicates with the user.
Available Communications Mechanisms

- Sockets
- Message passing libraries (PVM, MPI)
 - very powerful
 - not easy to use
 - designed for C, FORTRAN
- R interfaces
 - socket connections
 - rpvm, Rmpi
Start with an “embarrassingly parallel” problem:

Divide jobs among slave processes and collect results:

Ideal: \(p \) times faster with \(p \) slaves.
A More Realistic Picture

- Jobs vary in complexity.
- Machines vary in speed/load.
- Communication takes time.
- Dividing up jobs and collecting results takes time.
Snow is a package for R (available from CRAN).

Snow uses the master/slave model.

- The user starts an ordinary R session
- The R session creates a cluster of slave processes.
- Jobs are sent to the slave processes and results are returned.

Communication can use sockets, PVM, MPI.

Additional back ends may be added.
Create a cluster of 10 R slave processes:

```r
library(snow)
cl <- makeCluster(10)
```

Find out where the processes are running:

```r
> do.call("rbind", clusterCall(cl, function(cl) Sys.info()\["nodename"\]))
  nodename
[1,] "node02"
[2,] "node03"
...
[5,] "node06"
[6,] "beowulf.stat.uiowa.edu"
[7,] "node02"
...
[10,] "node05"
```
Stopping A SNOW Cluster

- Stop the cluster:
 \texttt{stopCluster(cl)}

- Emergency break: Exit R, and
 - for PVM, halt the PVM.
 - for LAM-MPI, use \texttt{lamhalt} or \texttt{wipe}
 - for sockets, should just stop; if not, you are on your own
Cluster Level Functions

- Call function on all nodes:

 \texttt{clusterCall(cl, exp, 1)}

- Evaluate an expression on all nodes:

 \texttt{clusterEvalQ(cl, library(boot))}

- Apply function to list, one element per node:

 \texttt{clusterApply(cl, 1:5, get("+"), 2)}

- Apply a function element-wise to several arguments:

 \texttt{clusterMap(cl, get("*"), 1:5, 1:5)}

- Assign values of specified global variables on master on each slave:

 \texttt{clusterExport(cl, c("x", "y"))}
Higher Level Functions

- Parallel `lapply`:
  ```r
  > unlist(parLapply(cl, 1:15, get("+")), 2)
  [1]  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17
  ```

- Parallel `sapply`:
  ```r
  > parSapply(cl, 1:15, get("+")), 2)
  [1]  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17
  ```

- Parallel `apply`:
  ```r
  > parApply(cl, matrix(1:10, ncol=2), 2, sum)
  [1] 15 40
  ```

- Row, column versions that may be more efficient:
  ```r
  > parRapply(cl, matrix(1:10, ncol=2), sum)
  [1]  7  9 11 13 15
  > parCapply(cl, matrix(1:10, ncol=2), sum)
  [1] 15 40
  ```

- May add `parMapply` soon.
Random number generation needs help:

```r
> clusterCall(cl, runif, 3)
[[1]]
[1] 0.4351672 0.7394578 0.2008757
[[2]]
[1] 0.4351672 0.7394578 0.2008757
...
[[10]]
[1] 0.4351672 0.7394578 0.2008757
```

- Identical streams are likely, not guaranteed.
- If you want identical streams you can set a common seed.
- If you want “independent” streams you need something else.
- Using random seeds may work.
- A better alternative is to use a parallel generator package.
Several parallel generators are available for R.

These use R’s facility to replace the core uniform generator.

The `rlecuyer` package provides an interface to the `streams` library of L’Ecuyer, Simard, Chen, and Kelton.

The function `clusterSetupRNG` assigns separate random number streams to each slave:

```R
> clusterSetupRNG(cl)
> clusterCall(cl, runif, 3)
[[1]]
[1] 0.1270111 0.3185276 0.3091860
[[2]]
[1] 0.7595819 0.9783106 0.6851358
... 
[[10]]
[1] 0.2925952 0.3593174 0.2368010
```
Example: Parallel Bootstrap

- Bootstrapping is embarrassingly parallel.
- Replications can be split onto a cluster.
- Random number streams on nodes need to be independent.
- `boot` package allows bootstrapping of any R function.
- Help page shows example of bootstrapping `glm` fit for data on the cost of constructing nuclear power plants.
Example: Parallel Bootstrap (cont.)

- 1000 replicates on a single processor:
  ```
  > R <- 1000
  > system.time(NUKE.boot <-
  + boot(NUKE.data, NUKE.fun, R=R, m=1,
  +     fit.pred=new.fit, x.pred=new.data))
  
  user    system   elapsed
  12.703   0.001   12.706
  ```

- Parallel version: 100 replicates on each of 10 cluster nodes:
  ```
  > clusterEvalQ(cl, library(boot))
  > clusterSetupRNG(cl)
  > system.time(cl.Nuke.boot <-
  + clusterCall(cl, boot, NUKE.data, NUKE.fun,
  +     R=R/length(cl), m=1,
  +     fit.pred=new.fit, x.pred=new.data))
  
  user    system   elapsed
  0.009    0.004   1.246
  ```
Several R packages provide spatial prediction (kriging).
Sgeostat has a pure R version, `krige`.
Computation is a simple loop over points.
Fairly slow when using only points within `maxdist`.
Result structure is fairly simple.
Easy to write a parallel version.
parKrige <- function(cl, s, ...) {
 # split the prediction points s
 idx <- clusterSplit(cl, 1: dim(s)[1])
 ssplt <- lapply(idx, function(i) s[i,])

 # compute the predictions in parallel
 v <- clusterApply(cl, ssplt, krige, ...)

 # assemble and return the results
 merge <- function(x, f) do.call("c", lapply(x, f))
 s.o <- point(s)
 s.o$zhat <- merge(v, function(y) y$zhat)
 s.o$sigma2hat <- merge(v, function(y) y$sigma2hat)
 return(s.o)
}
• Measurements at 155 points.
• Predict on $50m \times 50m$ grid.
• Use only data within 1 kilometer.
• Sequential version takes 38.12 seconds.
• Parallel version (10 nodes) takes 6.22 seconds.
• Only a factor of 6 speedup.
XPVM: Visualizing the Parallel Computation

- Graphical console for starting/stopping PVM.
- Shows hosts used in the PVM (all dual processor).
- Displays activity dynamically.
- Shows uneven load distribution.
Load Balanced Kriging

- `clusterApplyLB`: load balanced `clusterApply`.
- Give more jobs n than cluster nodes p.
 - Places first p jobs on p nodes,
 - job $p + 1$ goes to first node to finish,
 - job $p + 2$ goes to second node to finish,
 - etc., until all n jobs are done.
Load Balanced Kriging (cont.)

- Load balanced version takes 4.62 seconds (speedup of 8.25).

 ![Load Balanced](image)

 ![No Load Balancing](image)

- Communication is increased.
- Node executing a particular job is non-deterministic.
Example: Cross Validation

- Useful for choosing tuning parameters.
- Common structure:
 - Outer loop over tuning parameters
 - Inner loop over omitted data
 - Additional inner replication loop if random (nnet)
- Good initial approach:
 - parallelize loop over omitted data
 - replace loop by lapply; test and debug
 - replace lapply by parLapply
Example: Cross Validation (cont.)

Nested loops

```r
cv <- function(parameters, data)
  for (p in parameters) {
    v <- vector("list", length(data))
    for (d in data)
      v[[d]] <- fit for p, omitting d
    summarize result for p
  }
```

`lapply` in inner loop

```r
lcv <- function(parameters, data)
  for (p in parameters) {
    fit <- function(p, d)
      fit for p, omitting d
    v <- lapply(data, fit)
    summarize result for p
  }
```

Parallel version

```r
parCv <- function(cl, parameters, data)
  for (p in parameters) {
    fit <- function(p, d)
      fit for p, omitting d
    v <- parLapply(cl, data, fit)
    summarize result for p
  }
```
Performance Consideration

- Communication.
 - explicit data
 - hidden data
- Load balancing.
 - variable task complexities
 - variable node performance/load
 - RNG issues
Discussion

Design goals:
- simplicity of design
- portable
- easy to use
- user cannot deadlock

Drawbacks:
- cannot express all parallel algorithms
- some can be expressed but not efficiently
Future Directions

Issues to address:
- non-parallel testing framework
- better error handling
- sensible handling of user interrupts
- integration with Condor, GRID, etc.

Extensions
- integrating load balancing into all functions
- R-level collection of timing information
- effective interface to queue/stream of jobs
- persistent data on nodes
- limited inter-node communication (BSP?)